Skip to main content
padlock icon - secure page this page is secure

Cholesterol-dependent induction of dendrite formation by ginsenoside Rh2 in cultured melanoma cells

Buy Article:

$42.00 + tax (Refund Policy)

Herbal remedies containing root extracts of Panax ginseng are commonly used for complementary or alternative therapies. Ginsenosides, the major components of root extracts, are responsible for ginseng's pharmacological and biological effects; however, their mechanisms of action are unclear. We examined whether membrane cholesterol was involved in the mechanism of action of ginsenoside Rh2 in cultured cells. In B16 melanoma cells, Rh2 (18.5 ┬ÁM) induced dendrite formation within 2 h. Depletion of cholesterol by pretreatment with 10 mM methyl-β-cyclodextrin suppressed this effect of Rh2. Rh2 did not change the cellular cholesterol content and the immunofluorescence staining pattern of the lipid-raft-associated molecules, ganglioside GM3, Caveolin-1, Flotillin-1, and Flotillin-2, for up to 3 or 6 h. However, within 2 min of addition, Rh2 changed the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) but not of 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH). DPH is more sensitive than TMA-DPH to changes in the physical properties of membrane lipid bilayers regulated by cholesterol. These results suggest that Rh2 affects the physical properties of cholesterol-regulated membrane lipid bilayers and could lead to changes in cellular functions.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Division of Molecular Oncology and Virology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan

Publication date: December 1, 2010

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more