Skip to main content

Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer's disease in an NSE/APPsw-transgenic model

Buy Article:

$42.00 + tax (Refund Policy)

Alzheimer's disease (AD) is a progressive neurodegenerative disease for which there are few therapeutic regimens that influence the underlying pathogenic phenotypes. However, of the currently available therapies, exercise training is considered to be one of the best candidates for amelioration of the pathological phenotypes of AD. Therefore, we directly investigated exercise training to determine whether it was able to ameliorate the molecular pathogenic phenotypes in the brain using a neuron-specific enolase (NSE)/Swedish mutation of amyloid precursor protein (APPsw) transgenic (Tg) mice as a novel AD model. To accomplish this, Non-Tg and NSE/ APPsw Tg mice were subjected to exercise on a treadmill for 16 weeks, after which their brains were evaluated to determine whether any changes in the pathological phenotype-related factors had occurred. The results indicated (i) that amyloid β-42 (Aβ-42) peptides were significantly decreased in the NSE/APPsw Tg mice following exercise training; (ii) that exercise training inhibited the apoptotic biochemical cascades, including cytochrome c, caspase-9, caspase-3 and Bax; (iii) that the glucose transporter-1 (GLUT-1) and brain-derived neurotrophic factor (BDNF) proteins induced by exercise training protected the neurons from injury by inducing the concomitant expression of genes that encode proteins such as superoxide dismutase-1 (SOD-1), catalase and Bcl-2, which suppress oxidative stress and excitotoxic injury; (iv) that heat-shock protein-70 (HSP-70) and glucose-regulated protein-78 (GRP-78) were significantly increased in the exercise (EXE) group when compared to the sedentary (SED) group, and that these proteins may benefit the brain by making it more resistant to stress-induced neuron cell damage; (v) and that exercise training contributed to the restoration of normal levels of serum total cholesterol, insulin and glucose. Taken together, these results suggest that exercise training represents a practical therapeutic strategy for human subjects suffering from AD. Moreover, this training has the potential for use in new therapeutic strategies for the treatment of other chronic disease including diabetes, cardiovascular and Parkinson's disease.

Document Type: Research Article

Affiliations: Exercise Biochemistry Laboratory, Korea National Sport University, Seoul 138-763, Korea

Publication date: 01 January 2008

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content