Skip to main content
padlock icon - secure page this page is secure

Effects of apicidin, a histone deacetylase inhibitor, on the regulation of apoptosis in H-ras-transformed breast epithelial cells

Buy Article:

$42.00 + tax (Refund Policy)

The cellular susceptibility of cancer cells to histone deacetylase (HDAC) inhibitors is increased by the etopic expression of oncogenic Ras. However, the ability of HDAC inhibitors to regulate the apoptotic pathway in human breast cancer cells is still not completely understood. In this study, the anti-proliferative effects of apicidin were compared in H-ras-transformed human breast epithelial (MCF10A-ras) and non-transformed epithelial (MCF10A) cells. MCF10A-ras cells showed a significantly higher growth rate than MCF10A cells. Apicidin significantly increased the levels of acetylated histone H3 and H4 in both cell lines. Western blot analysis and flow cytometry were used to determine if the anti-proliferative effects of apicidin in MCF10A and MCF10A-ras cells could be mediated by modulating the cell cycle. Apicidin attenuated the expression of cyclin E and CDK2 in MCF10A cells, decreased cyclin D1 and cyclin E levels in MCF10A-ras cells, and increased the levels of CDK inhibitors, p21WAF1/Cip1 and p27Kip1, in both cell lines. Notably, the levels of hyperphosphorylation of the Rb protein levels were lower in the MCF10A-ras cells after apicidin treatment. Studies on the regulation of apoptosis showed that apicidin induces the up-regulation of p53 and the downstream activation of ERK in MCF10A-ras cells. The up-regulation of p53 promoted Bax expression leading to activation of caspases-9 and -6, and eventually to apoptosis in MCF10A-ras cells. In addition, apicidin significantly increased the levels of ERK1/2 phosphorylation in MCF10A-ras cells. Therefore, the apicidin-mediated ERK pathway appears to play an important role in modulating the pro-apoptotic pathway in MCF10A-ras cells.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 609-735, Korea

Publication date: January 1, 2008

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more