Skip to main content
padlock icon - secure page this page is secure

Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease

Buy Article:

$42.00 + tax (Refund Policy)

Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent causes of abnormal liver dysfunction, and its prevalence has markedly increased. We previously evaluated the expression of fatty acid metabolism-related genes in NAFLD and reported changes in expression that could contribute to increased fatty acid synthesis. In the present study, we evaluated the expression of additional fatty acid metabolism-related genes in larger groups of NAFLD (n=26) and normal liver (n=10) samples. The target genes for real-time PCR analysis were as follows: acetyl-CoA carboxylase (ACC) 1, ACC2, fatty acid synthase (FAS), sterol regulatory element-binding protein 1c (SREBP-1c), and adipose differentiation-related protein (ADRP) for evaluation of de novo synthesis and uptake of fatty acids; carnitine palmitoyltransferase 1a; (CPT1a), long-chain acyl-CoA dehydrogenase (LCAD), long-chain L-3-hydroxyacylcoenzyme A dehydrogenase α (HADHα), uncoupling protein 2 (UCP2), straight-chain acyl-CoA oxidase (ACOX), branched-chain acyl-CoA oxidase (BOX), cytochrome P450 2E1 (CYP2E1), CYP4A11, and peroxisome proliferator-activated receptor (PPAR)α for oxidation in the mitochondria, peroxisomes and microsomes; superoxide dismutase (SOD), catalase, and glutathione synthetase (GSS) for antioxidant pathways; and diacylglycerol O-acyltransferase 1 (DGAT1), PPARγ, and hormone-sensitive lipase (HSL) for triglyceride synthesis and catalysis. In NAFLD, although fatty acids accumulated in hepatocytes, their de novo synthesis and uptake were up-regulated in association with increased expression of ACC1, FAS, SREBP-1c, and ADRP. Fatty acid oxidation-related genes, LCAD, HADHα, UCP2, ACOX, BOX, CYP2E1, and CYP4A11, were all overexpressed, indicating that oxidation was enhanced in NAFLD, whereas the expression of CTP1a and PPARα was decreased. Furthermore, SOD and catalase were also overexpressed, indicating that antioxidant pathways are activated to neutralize reactive oxygen species (ROS), which are overproduced during oxidative processes. The expression of DGAT1 was up-regulated without increased PPARγ expression, whereas the expression of HSL was decreased. Our data indicated the following regarding NAFLD: i) increased de novo synthesis and uptake of fatty acids lead to further fatty acid accumulation in hepatocytes; ii) mitochondrial fatty acid oxidation is decreased or fully activated; iii) in order to complement the function of mitochondria (β-oxidation), peroxisomal (β-oxidation) and microsomal (ω-oxidation) oxidation is up-regulated to decrease fatty acid accumulation; iv) antioxidant pathways including SOD and catalase are enhanced to neutralize ROS overproduced during mitochondrial, peroxisomal, and microsomal oxidation; and v) lipid droplet formation is enhanced due to increased DGAT expression and decreased HSL expression. Further studies will be needed to clarify how fatty acid synthesis is increased by SREBP-1c, which is under the control of insulin and AMP-activated protein kinase.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan

Publication date: September 1, 2007

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more