Skip to main content

Sonic hedgehog inversely regulates the expression of angiopoietin-1 and angiopoietin-2 in fibroblasts

Buy Article:

$42.00 + tax (Refund Policy)

Nerves and blood vessels have similar branching patterns and use common morphogenic molecules during development. Recent studies show that sonic hedgehog (Shh), a traditional neurogenic morphogen, is required for embryonic arterial differentiation and can induce angiogenesis. We investigated whether Shh regulates the expression of angiogenic factors. Using NIH3T3 embryonic fibroblast cells, we demonstrated that Shh increased the mRNA levels of angiopoietin-1 (Ang-1), a secreted ligand that regulates endothelial interaction with mural cells (pericytes and smooth muscle cells) and promotes blood vessel maturation. In contrast, Shh decreased mRNA levels of angiopoietin-2 (Ang-2), a negative modulator of Ang-1. By contrast, Shh did not change the expression of vascular endothelial growth factor (VEGF) mRNA, a potent endothelial mitogen. The effect of Shh appeared to be cell-type specific as the addition of Shh to neural progenitor cells or neurons did not alter Ang-1, Ang-2 or VEGF mRNA levels. The addition of cyclopamine, an inhibitor of Shh signaling, to NIH3T3 cells, suppressed the regulation of Ang-1 and Ang-2 mRNA levels in the presence of Shh. Collectively, our results suggest that Shh may contribute to blood vessel growth, maturation and stabilization in a neurovascular network by reciprocally regulating the vascular morphogens Ang-1 and Ang-2 in a cell-type-specific manner.

Document Type: Research Article

Affiliations: Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA

Publication date: 01 March 2007

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content