Skip to main content
padlock icon - secure page this page is secure

SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress

Buy Article:

$42.00 + tax (Refund Policy)

Forkhead transcription factor, DAF-16, regulates genes that contribute both to longevity and resistance to various stresses in C. elegans. We and others have reported that members of the FOXO, mammalian homologs of DAF-16, also regulate genes related to stress resistance, such as GADD45. The NAD-dependent protein deacetylase, SIR2, is required for life span extension in yeast induced by caloric restriction, which also increases longevity in a wide variety of other organisms, including mammals. Sir2.1, a homolog of yeast SIR2, also extends life span by acting in a DAF-16 signaling pathway in C. elegans. We demonstrate that mammalian SIRT1 (Sir2α) physiologically interacts with FOXO. Acetylation of FOXO4, by the transcriptional coactivator p300, counteracted transcriptional activation of FOXO4 by p300. In contrast, mammalian SIRT1 was found to bind to FOXO4, catalyze its deacetylation in an NAD-dependent manner, and thereby increase its transactivation activity. The activity of FOXO4 is suppressed or enhanced by SIRT1 inhibitor, nicotinamide, or its activator, resveratrol, respectively. In response to oxidative stress, FOXO accumulates within the nucleus and induces GADD45 expression. FOXO-mediated GADD45 induction is markedly impaired in the cell, which depleted SIRT1 expression by RNA-interference. These results indicate that mammalian SIRT1 plays a pivotal role for FOXO function via NAD-dependent deacetylation in response to oxidative stress, and thereby may contribute to cellular stress resistance and longevity.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Geriatric Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522, Japan

Publication date: January 1, 2005

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more