Skip to main content

Deletion of the kinase domain in death-associated protein kinase attenuates renal tubular cell apoptosis in chronic obstructive uropathy

Buy Article:

$42.00 + tax (Refund Policy)

Death-associated protein kinase (DAPK) is a Ca2+/calmodulin-dependent serine/threonine kinase that has been implicated as a positive mediator of apoptosis. However, little is known about the involvement of DAPK in the apoptosis associated with several pathological states, except for cancer. Here, DAPK-mutant mice were used in order to examine the role of DAPK in renal cell apoptosis in chronic obstructive uropathy (COU) created by unilateral ureteral ligation. These mice express mutant DAPK with a deletion of 74 amino acids from the catalytic kinase domain. Obstructed kidneys in wild-type and mutant mice were examined for both DAPK protein levels and renal cell apoptosis during the course of COU. Obstructed kidneys in wild-type and mutant mice showed a marked increase in the DAPK and mutant DAPK protein levels, respectively, at day 14 after ureteric ligation. The obstructed kidneys in DAPK-mutant mice displayed a significant attenuation of tubular cell apoptosis, compared with wild-type mice. In contrast, no significant difference in interstitial cell apoptosis was observed between the obstructed kidneys from wild-type and mutant mice. Thus, these results indicate that the part of the kinase domain deleted by the gene targeting is crucial for the execution of tubular cell apoptosis, but is not essential for interstitial cell apoptosis in a COU model in mice.

Document Type: Research Article

Affiliations: Department of Physiology, Wakayama Medical University, Wakayama 641-8509, Japan., Email: [email protected]

Publication date: 01 April 2004

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content