Skip to main content
padlock icon - secure page this page is secure

Persistent expression of the α1S-dihydropyridine receptor in aged human skeletal muscle: Implications for the excitation-contraction uncoupling hypothesis of sarcopenia

Buy Article:

$42.00 + tax (Refund Policy)

Previous studies on aged animal muscle suggest that excitation-contraction uncoupling and fibre transitions play a central role in sarcopenia, the progressive loss and functional decline of aging skeletal muscle fibres. A drastic reduction in the voltage-sensing α1S-subunit of the transverse-tubular dihydropyridine receptor is believed to be the underlying cause for a decreased transmission of the surface depolarization signal into Ca2+-mediated muscle contraction. Extending these studies to human muscle, we asked whether potential changes in the relative expression of the voltage sensor occur in senescent human fibres. For internal standardization and as markers of potential fast-to-slow transitions, the fast isoforms of the Ca2+-binding element calsequestrin and the myosin heavy chain were employed. Besides small inter-individual variations in expression levels, the microsomal immunoblot analysis of vastus lateralis autopsy specimens from male humans aged 18 to 82 years of age showed no major changes in the relative abundance of the α1S- and α2-dihydropyridine receptor, fast calsequestrin and the slow/fast myosin heavy chains. The oligomeric status of the α1S-dihydropyridine receptor was unaltered in aged fibres. Biochemical assays revealed no significant modifications in Ca2+-ATPase activity and a reduced Ca2+-binding capacity in aged human muscle preparations. Although impairments of other Ca2+-regulatory proteins and/or disturbed protein-protein interactions might be involved in the pathophysiological changes of sarcopenia, dihydropyridine receptor and calsequestrin expression seem to be preserved during the aging process of human skeletal muscle fibres. Hence, the supposition that excitation-contraction uncoupling is responsible for sarcopenia can not be transferred from animal models to senescent human muscle without modifications.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Pharmacology, University College Dublin, Belfield, Dublin 4, Ireland

Publication date: January 1, 2003

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more