Skip to main content

Expression of human SOX18 in normal tissues and tumors

Buy Article:

$42.00 + tax (Refund Policy)

SOX proteins are a family of transcription factors with high-mobility-group DNA-binding domain (HMG box) homologous to SRY, which play key roles in embryogenesis. Xenopus Sox17α, Sox17β, Sox3 and mouse Sox7 are reported to be negative regulators of the WNT-β-catenin-TCF signaling pathway. SOX7, SOX17, and SOX18 constitute a subfamily among the SOX gene family. Here, expression of SOX18 mRNA was investigated using Northern blot analysis, RNA dot blot analysis, and cDNA-PCR. SOX18 mRNA was significantly highly expressed in ventricles and inter-ventricular septum of adult heart among various normal human tissues. SOX18 mRNA was relatively highly expressed in stomach and jejunum in the gastrointestinal tract. SOX18 mRNA was relatively highly expressed in TMK1 and MKN45 among 7 gastric cancer cell lines. SOX18 mRNA was expressed in all out of 7 pancreatic cancer cell lines, and was relatively highly expressed in PANC-1, Hs700T, Hs766T and MIA PaCa-2. Expression level of SOX18 mRNA in MCF-7 cells (breast cancer) was not affected by β-estradiol. SOX18 mRNA was expressed in all out of 5 embryonal tumor cell lines, and was relatively highly expressed in NT2 with the potential to differentiate into neuronal cells. Expression level of SOX18 mRNA in NT2 cells was down-regulated by all-trans retinoic acid. This is the first report on comprehensive expression analyses of SOX18 mRNA in normal human tissues and tumors.

Document Type: Research Article

Affiliations: Genetics and Cell Biology Section, Genetics Division, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan

Publication date: 01 January 2002

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content