Skip to main content

Impaired Ca2+-sequestration in dilated cardiomyopathy (Review)

Buy Article:

$42.00 + tax (Refund Policy)

Excitation-contraction coupling is the process by which depolarisation of the myocardial surface membrane leads to the release of Ca2+-ions from the sarcoplasmic reticulum, inducing cardiac muscle contraction. This process is made possible by an elaborate system of ion-release, uptake and sequestration that controls the contraction and relaxation cycle of heart muscle fibres. The free intracellular Ca2+-concentration determines the contractile state of the myocardium, and the sequestration of Ca2+-ions into the lumen of the sarcoplasmic reticulum by the Ca2+-ATPase pump units represents a critical step towards the maintenance of normal Ca2+-cycling. The Ca2+-ATPase pump activity is regulated by phospholamban, a small 52-amino acid protein whose phosphorylation state dictates its inhibitory action on the pump. A large body of evidence points to the central role of abnormal Ca2+-ATPase-phospholamban interactions in pathophysiological heart conditions, thereby compromising the contractile state of the cardiac muscle cell. It has been shown that alterations in the oligomeric status of the Ca2+-ATPase and modified interactions between the Ca2+-pump and its regulatory subunit phospholamban underlie the contractile dysfunction that characterises certain forms of dilated cardiomyopathy. Hence, elucidation of interactions within physiological Ca2+-ATPase pump units in normal and diseased myocardium is a vital link in the development of improved diagnostic and therapeutic techniques for dealing with this elusive condition.

Document Type: Research Article

Affiliations: Department of Pharmacology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland

Publication date: 01 January 2001

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content