Skip to main content
padlock icon - secure page this page is secure

Transmural conduction time in an early repolarization syndrome model

Buy Article:

$42.00 + tax (Refund Policy)

In the pathological aspect of J wave syndrome, delayed depolarization is defined as the difference in local conduction velocity of the ventricular myocardium. If polymorphic ventricular tachycardia is induced without local conduction velocity heterogeneity, this contradicts the delayed depolarization theory. In the present study, the transmural conduction time at was evaluated at several transmural locations in a canine early repolarization model. The transmural pseudoelectrocardiogram and endocardial/epicardial action potentials were recorded from coronaryperfused canine left ventricular wedge preparations (n=18). The Ito agonist NS5806 (910 µM), Ca2+ channel blocker verapamil (2 µM) and acetylcholine (ACh) (2 µM) were used to pharmacologically mimic early repolarization syndrome genotypes. The transmural conduction times were measured at five fixed epicardial unipolar electrodes before and after the perfusion of provocative agents. The transmural conduction time was defined as the time from endocardial stimulation to the maximal negative deflection (dV/dt) of the endocardial electrogram at the unipolar electrode. Polymorphic ventricular tachycardia developed in 14/18 preparations. In the transmembrane action potentials, there was no definite delayed phase 0 upstroke in any induced polymorphic ventricular tachycardia preparations. In all preparations, the transmural conduction time increased significantly after perfusing the Ito agonist NS5806, verapamil and Ach; however, the increase was only 2.6±0.4 msec, and dispersion of the transmural conduction time did not exhibit significant heterogeneity (7.16±0.93 vs. 7.76±1.21 msec; P=0.240). In the early repolarization model, polymorphic ventricular tachycardia was induced without any regional conduction velocity heterogeneity. This finding suggests that local depolarization heterogeneity would not be a major contributor to the generation of ventricular arrhythmia in the early repolarization syndrome wedge preparation model.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Cardiovascular Medicine, Heart Center of Chonnam National University Hospital, Chonnam National University Medical School, Chonnam National University, Donggu, Gwangju 61469, Republic of Korea

Publication date: October 1, 2020

More about this publication?
  • Experimental and Therapeutic Medicine aims to ensure the expedient publication, in both print and electronic format, of studies relating to biology, gene therapy, infectious disease, microbiology, molecular cardiology and molecular surgery. The journal welcomes studies pertaining to all aspects of molecular medicine, and studies relating to in vitro or in vivo experimental model systems relevant to the mechanisms of disease are also included.

    All materials submitted to this journal undergo the appropriate review via referees who are experts in this field. All materials submitted follow international guidelines with regard to approval of experiments on humans and animals.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more