Skip to main content
padlock icon - secure page this page is secure

Open Access Flight Path Planning of Robot for Environmental Measurement Considering Accuracy Assurance

Download Article:
 Download
(PDF 295.9 kb)
 
Every day we are seeing an increasing number of robots being employed in our day-to-day lives. They are working in factories, cleaning our houses and may soon be chauffeuring us around in vehicles. The affordability of drones too has come down and now it is conceivable for most anyone to own a sophisticated unmanned aerial vehicle (UAV). While fun to fly, these devices also represent powerful new tools for several industries. Anytime an aerial view is needed for a planning, surveillance or surveying, for example, a UAV can be deployed. Further still, equipping these vehicles with an array of sensors, for climate research or mapping, increases their capability even more. This gives companies, governments or researchers a cheap and safe way to collect vast amounts of data and complete tasks in remote or dangerous areas that were once impossible to reach. One area UAVs are proving to be particularly useful is infrastructure inspection. In countries all over the world large scale infrastructure projects like dams and bridges are ageing and in need of upkeep. Identifying which ones and exactly where they are in need of patching is a huge undertaking. Not only can this work be dangerous, requiring trained inspectors to climb these megaprojects, it is incredibly time consuming and costly. Enter the UAVs. With a fleet of specially equipped UAVs and a small team piloting them and interpreting the data they bring back the speed and safety of this work increases exponentially. The promise of UAVs to overturn the infrastructure inspection process is enticing, but there remain several obstacles to overcome. One is achieving the fine level of control and positioning required to navigate the robots around 3D structures for inspection. One can imagine that piloting a small UAV underneath a huge highway bridge without missing a single small crack is quite difficult, especially when the operators are safely on the ground hundreds of meters away. To do this knowing exactly where the vehicle is in space becomes a critical variable. The job can be made even easier if a flight plan based on set waypoints can be pre-programmed and followed autonomously by the UAV. It is exactly this problem that Dr Kae Doki from the Department of Electrical Engineering at Aichi Institute of Technology, and collaborators are focused on solving.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: AGEING INFRASTRUCTURE; AUTOMATIC INSPECTION SYSTEMS; AUTONOMOUS MOBILE ROBOTS; DATA ANALYSIS; INFRASTRUCTURE INSPECTION; SENSOR FUSION; UAVs; UNMANNED AERIAL VEHICLES

Document Type: Research Article

Publication date: December 1, 2019

More about this publication?
  • Impact is a series of high-quality, open access and free to access science reports designed to enable the dissemination of research impact to key stakeholders. Communicating the impact and relevance of research projects across a large number of subjects in a content format that is easily accessible by an academic and stakeholder audience. The publication features content from the world's leading research councils, policy groups, universities and research projects. Impact is published under a CC-BY Creative Commons licence.

  • Subscribe to this Title
  • Terms & Conditions
  • Disseminating research in Impact
  • Information about Impact
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more