Skip to main content
padlock icon - secure page this page is secure

Open Access MAGicSky, Magnetic Skyrmions for Future Nanospintronic Devices, H2020

Download Article:
(PDF 439.5 kb)
Challenges facing technology for power efficient, high density, high speed information processing and storage are well recognised, and strategies for meeting them in the short term define the shape of industry roadmaps. As a consequence, in the next ten years, radically new approaches will be implemented and will transform how data is stored and manipulated. Skyrmion-based devices are newcomers to this global race for the next generations of information technology. Skyrmions were discovered in magnetic crystals only a few years ago, but we already have within reach a possibility to create them in nanoscale devices that can be made compatible with conventional integrated circuit technology. Our work in MAGicSky will substantiate this possibility.The potential benefits are enormous. Skyrmions are magnetic solitons that carry information, and are remarkably robust against defects that can trap or destroy them due to the topology of their magnetic texture. Topology also appears to further underlie other of their technologically important features: mobility with small continuous currents and singular dynamics under radiofrequency.

MAGicSky will engage some of the most advanced materials fabrication, characterisation and microscopic imaging facilities in Europe together with leading theoretical and computational modelling capabilities, to create the first proof-of-concept room temperature spintronic devices based on magnetic skyrmions.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: August 1, 2018

More about this publication?
  • Impact is a series of high-quality, open access and free to access science reports designed to enable the dissemination of research impact to key stakeholders. Communicating the impact and relevance of research projects across a large number of subjects in a content format that is easily accessible by an academic and stakeholder audience. The publication features content from the world's leading research councils, policy groups, universities and research projects. Impact is published under a CC-BY Creative Commons licence.

  • Subscribe to this Title
  • Terms & Conditions
  • Disseminating research in Impact
  • Information about Impact
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more