Skip to main content
padlock icon - secure page this page is secure

Open Access MefCO2 – Synthesis of methanol from captured carbon dioxide using surplus electricity (EU-H2020)

Download Article:
 Download
(PDF 531.5 kb)
 
Methanol represents one of the most common and widespread platform chemicals and precursors for further synthesis, and is traditionally produced from synthesis gas, obtained by the reforming of natural gas. This methanol synthesis process operates in a stable, high-throughput manner and demands low carbon dioxide/carbon monoxide ratios in feed. The current project, nonetheless, is to encompass flexible (in operation and feed) methanol synthesis with high carbon dioxide concentration-streams as an input, the latter originating from power and industrial plants using fossil fuels. The demonstrational technology may alternatively be intended for the application of existing biomass combustion and gasification system streams, operating for the production of electric/thermal energy, as opposed to chemical synthesis. The other synthesis reactant, hydrogen, is to originate from water hydrolysis using surplus energy, which would be conversely difficult to return to the grid. The three main benefits of the process would thus be as follows; the mitigation of exhaust carbon dioxide and reduction of greenhouse gas emissions (1), stabilisation of electric grid by the consumption of the electric energy at its peaks (2), and the production of methanol as a versatile chemical for further conversion (3). Implications of such technology would have a strong connection to the pending exploration of alternative energy carriers and their synthesis as opposed to conventional resources of fuels and chemicals. The principal technological challenge to be overcome is anticipated to be the development of a suitable catalyst and process, which would allow for high-CO2-content feeds, relatively transient operation (save for an upstream buffering technology is developed), and economically viable operating conditions. The primary advantages of this technology are to be its flexibility, medium-scale operation (deployed “at exhaust location”), and facile integration capacities.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Biomass; CCS; CCU; CO2; CO2 emissions; Carbon; Carbon economy; Climate change; Decarbonisation; Energy storage; Fossil fuels; Fuel; Gases; Low-carbon economy; Methanol; Natural gas; Power-to-Chemicals (P2C); Power-to-X (P2X); Power-to-fuels (P2F); Renewable energy; Steel; Technology; Transportation fuels

Document Type: Research Article

Publication date: June 1, 2017

More about this publication?
  • Impact is a series of high-quality, open access and free to access science reports designed to enable the dissemination of research impact to key stakeholders. Communicating the impact and relevance of research projects across a large number of subjects in a content format that is easily accessible by an academic and stakeholder audience. The publication features content from the world's leading research councils, policy groups, universities and research projects. Impact is published under a CC-BY Creative Commons licence.

  • Subscribe to this Title
  • Terms & Conditions
  • Disseminating research in Impact
  • Information about Impact
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more