Skip to main content
padlock icon - secure page this page is secure

Open Access MULTIFUN - Multifunctional Nanotechnology for selective detection and Treatment of cancer - FP7 Project

Download Article:
 Download
(PDF 286.2 kb)
 
The aim of the MultiFun consortium is to develop and validate a novel and minimally-invasive nanotechnology system to improve cancer diagnosis and treatment. MultiFun nanotechnology is based on multifunctionalised magnetic nanoparticles to selectively target and eliminate breast and pancreatic cancer (stem) cells. The improved magnetic features of the MultiFun magnetic nanoparticles will lead to potential medical applications such as contrast agents and magnetic heating inductors. Moreover, magnetic nanoparticles can be functionalised with ligands to increase their affinity towards cancer cells in order to facilitate diagnosis of tumours by MRI. Targeting peptides and antibodies will be employed, including antibodies against cancer stem cells leading to early cancer detection by MRI means. The same nanoparticles will be used simultaneously as functional nanocarriers and heating inductors in order to provide a combined therapeutic modality. The synergistic effects of drugs, peptides, small RNAs and heat will be evaluated to determine the effectiveness of different therapeutic combinations. Interestingly, the use of ligands will favour the specific application of the therapeutic modalities to cancer (stem) cells, increasing the effectiveness and reducing side effects. Thus, MultiFun multimodal therapeutic approach is designed to efficiently remove cancer cells, including cancer stem cells, from the tumour site. The toxicity of functionalised magnetic nanoparticles will be assessed in vitro and in vivo to warrant a safe use and shed some light on the risks. The distribution and activity evaluation of functionalised nanoparticles will be performed in human breast and pancreatic cancer xenograft models. The use of novel magnetic nanoparticles for biomedical applications provides opportunities for new instrumentation: 1) detection and quantification of magnetic nanoparticles in blood, urine and tissues, and 2) magnetic heating induction for raising cell temperature.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: BIODISTRIBUTON; CANCER CELLS; NANOPARTICLES; PANCREATIC CANCER; TUMORIGENIC STEM CELLS

Document Type: Research Article

Affiliations: IMDEA Nanociencia, Spain

Publication date: June 1, 2016

More about this publication?
  • Impact is a series of high-quality, open access and free to access science reports designed to enable the dissemination of research impact to key stakeholders. Communicating the impact and relevance of research projects across a large number of subjects in a content format that is easily accessible by an academic and stakeholder audience. The publication features content from the world's leading research councils, policy groups, universities and research projects. Impact is published under a CC-BY Creative Commons licence.

  • Subscribe to this Title
  • Terms & Conditions
  • Disseminating research in Impact
  • Information about Impact
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more