Skip to main content

Open Access PROCOGEN - Promoting a functional and comparative understanding of the conifer genome- implementing applied aspects for more productive and adapted forests - FP7 Project

In the midst of a climatic change scenario, the genetics of adaptive response in conifers becomes essential to ensure a sustainable management of genetic resources and an effective breeding. Conifers are the target of major tree breeding efforts worldwide. Advances in molecular technologies, such as next-generation DNA sequencing technologies, could have an enormous impact on the rate of progress and achievements made by tree breeding programmes. These new technologies might be used not only to improve our understanding of fundamental conifer biology, but also to address practical problems for the forest industry as well as problems related to the adaptation and management of conifer forests. In this context, ProCoGen will address genome sequencing of two keystone European conifer species. Genome re-sequencing approaches will be used to obtain two reference pine genomes. Comparative genomics and genetic diversity will be closely integrated and linked to targeted functional genomics investigations to identify genes and gene networks that efficiently help to develop or enhance applications related to forest productivity, forest stewardship in response to environmental change or conservation efforts. The development of high-throughput genotyping tools will produce an array of pre-breeding tools to be implemented in forest tree breeding programmes. ProCoGen will also develop comparative studies based on orthologous sequences, genes and markers, which will allow guiding re-sequencing initiatives and exploiting the research accumulated on each of the species under consideration to accelerate the use of genomic tools in diverse species. ProCoGen will integrate fragmented activities developed by European research groups involved in several ongoing international conifer genome initiatives and contribute to strengthening international collaboration with North American initiatives (US and Canada).

Keywords: CONIFER; FOREST REGENERATION; GENE NETWORKS; GENOMIC RESEARCH

Document Type: Research Article

Affiliations: University of Alcala, Spain

Publication date: 01 June 2016

More about this publication?
  • Impact is a series of high-quality, open access and free to access science reports designed to enable the dissemination of research impact to key stakeholders. Communicating the impact and relevance of research projects across a large number of subjects in a content format that is easily accessible by an academic and stakeholder audience. The publication features content from the world's leading research councils, policy groups, universities and research projects. Impact is published under a CC-BY Creative Commons licence.

  • Subscribe to this Title
  • Terms & Conditions
  • Disseminating research in Impact
  • Information about Impact
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content