Skip to main content
padlock icon - secure page this page is secure

Phosphorus incorporation into silica during modified chemical vapour deposition combined with solution doping

Buy Article:

$22.00 + tax (Refund Policy)

It is well known that the efficiency of silica-based erbium/ytterbium-doped fibre lasers and amplifiers can be greatly enhanced by a high level of phosphorus codoping due to an improved Yb to Er transfer efficiency. The manufacture of these types of rare earth (RE)-doped silica fibres with a high P concentration is principally carried out via modified chemical vapour deposition (MCVD) technology in combination with solution doping. The supply of RE ions for the P-doped active core of the fibre preform occurs via the liquid phase during the multi-stage preparation process. The incorporation of phosphorus into the silica matrix is determined and strongly influenced by the chemical equilibrium, evaporation by formation of gaseous phosphorus oxides, and diffusion during the process steps. The knowledge and understanding of these interaction processes are very important for the optimisation of the fabrication process for high power laser and amplifier fibres. Here, we report on a systematic investigation of phosphorus incorporation into the silica matrix during the MCVD process in combination with a solution doping technique. The P2O5-doped silica soot material of the individual steps was prepared with a wide range of different process parameters (gas concentration of the starting compounds POCl3 and SiCl4, pre-sintering temperatures, porosity). The samples were investigated concerning their porosity, morphological characterisation, and composition via scanning electron microscopy, Fourier transform infrared spectroscopy and energy dispersive x-ray spectroscopy.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 December 2015

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more