Skip to main content
padlock icon - secure page this page is secure

An Atomistic Look into Bio-inspired Nanoparticles and their Molecular Interactions with Cells

Buy Article:

$20.00 + tax (Refund Policy)

Abstract: Nanoparticles (NPs) have sizes that approach those of pathogens and they can interact with the membranes of eukaryotic cells in an analogous fashion. Typically, NPs are taken up by the cell via the plasma membrane by receptor-mediated processes and subsequently interact with various endomembranes. Unlike pathogens, however, NPs lack the remarkable specificity gained during the evolutionary process and their design and optimization remains an expensive and time-consuming undertaking, especially considering the limited information available on their molecular interactions with cells. In this context, molecular dynamics (MD) simulations have emered as a promising strategy to investigate the mechanistic details of the interaction of NPs with mammalian or viral membranes. In particular, MD simulations have been extensively used to study the uptake process of NPs into the cell, focusing on membrane vesiculation, endocytic routes, or passive permeation processes. While such work is certainly relevant for understanding NP–cell interactions, it remains very difficult to determine the correspondence between generic models and the actual NP. Here, we review how chemically-specific MD simulations can provide rational guidelines towards further bio-inspired NP optimization.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: CELLULAR MEMBRANES; MOLECULAR DYNAMICS; NANOPARTICLE

Document Type: Research Article

Publication date: 01 February 2019

More about this publication?
  • International Journal for Chemistry and Official Membership Journal of the Swiss Chemical Society (SCS) and its Divisions

    CHIMIA, a scientific journal for chemistry in the broadest sense, is published 10 times a year and covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.

  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more