Skip to main content
padlock icon - secure page this page is secure

Open Access Biomimetic Chemistry on Tandem Protein/Lipid Damages under Reductive Radical Stress

Download Article:
(PDF 602.8 kb)
The study of radical stress in the biological environment needs a comprehensive vision of all possible reactive species and their mechanisms. Among them, reductive stress is evaluated for its selective target of sulfur-containing compounds. The selective attack of reducing species like H atoms or eaq /H+ to sulfur-containing amino acid residues has been proved in different substrates, peptides and proteins. The transformations include methionine to α-aminobutyric acid and cysteine/cystine residues to alanine, as recognized in several sequences so far, such as RNase A, lysozyme, Met-enkephalin, amyloid β-peptide and metallothioneins. The amino acid desulfurization is accompanied by the formation of low-molecular-weight sulfur-centered radicals that may cause geometrical cistrans isomerization of unsaturated fatty acid residues in lipid bilayer. Thus, tandem protein/lipid damage is accomplished. Progress in research has given us a more comprehensive overview of the protein modifications and their roles, and the chemical biology approach will make its vital contribution to the study of free radical reactions, linking chemistry to biology and medicine.

37 References.

No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: September 1, 2008

More about this publication?
  • International Journal for Chemistry and Official Membership Journal of the Swiss Chemical Society (SCS) and its Divisions

    CHIMIA, a scientific journal for chemistry in the broadest sense, is published 10 times a year and covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.

  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more