Skip to main content
padlock icon - secure page this page is secure

Promotion of Adhesion of Green Flame Retardant Coatings onto Polyolefins by Depositing Ultra-Thin Plasma Polymer Films: A Critical Review

Buy Article:

$39.95 + tax (Refund Policy)

Various methods have been used for introducing fire retardant additives into polymers. Deposition of thick fire retardant coatings directly onto polymer substrates is an alternative technique. An important advantage of the coating technique is the preservation of the physical and chemical integrity of the polymer material. Moreover, the fire retardancy of the polymer materials can be achieved following their production. Suitable coating materials are inorganics, intumescent, char-forming, oxygendiluting, and cooling or radical quenching layers. The most important problem is to achieve sufficient coating thickness to withstand the direct attack of flame and to protect the polymer bulk from pyrolysis, otherwise blistering of coating, caused by emitted pyrolysis gases, is often observed. To avoid blistering of coating, the adhesion between polyolefin substrate and fire retardant coating has to be extraordinarily high.

In order to achieve such a high level of adhesion, the polymer surface has to be modified with adhesion-promoting functional groups. The deposition of thin plasma polymers as adhesion-promoting layers with NH2, OH or COOH groups has been the most suited method. These functional groups are able to form covalent bonds and other interactions between the fire-resistant coating and the plasma-modified polyolefin substrate. Additionally, the plasma polymer counteracts the strong mechanical stresses in the laminate on exposure to high temperatures by its flexibility. The thick fire retardant coatings were chosen based on "green" ecological aspects to avoid flame-initiated emission of toxic or corrosive gases and remains of toxic char.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ADHESION; COATING; FLAME RETARDANT; PLASMA POLYMERIZATION; POLYOLEFIN

Document Type: Review Article

Publication date: 01 December 2016

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more