Skip to main content
padlock icon - secure page this page is secure

Geomechanical Modeling of Fault Systems Using the Material Point Method – Application to the Estimation of Induced Seismicity Potential to Bolster Hydraulic Fracturing Social License

Buy Article:

$29.95 + tax (Refund Policy)

In an effort to promote awareness and understanding of the phenomena of induced seismicity, geomechanical modeling is applied to large publicly available datasets to demonstrate the potential for bolstering social license. The Material Point Method (MPM) is used to simulate the interaction of fault systems with regional stresses. By combining mechanical results of the simulation to create induced seismicity potential (ISP) proxies, maps are generated to express areas of high and low inducement potential of seismic events. The results are compared to recent earthquake epicenter and injection well data. High coincidence of earthquake epicenters with regions of predicted high induced seismicity potential suggests the workflow presented could be deployed to quantify the risk of induced seismicity associated with the location of high-volume injection wells. The addition of a tool to assess the impact of location, not only injection volumes, is another critical step towards responsible regulation of injection wells, and mitigation of induced seismic events.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 December 2016

This article was made available online on 22 November 2016 as a Fast Track article with title: "Geomechanical Modeling of Fault Systems using the Material Point Method – Application to the Estimation of Induced Seismicity Potential to Bolster Hydraulic Fracturing Social License".

More about this publication?
  • Welcome to the home page of the Journal of Sustainable Energy Engineering (JSEE), committed to publishing peer-reviewed original research seeking sustainable methods of worldwide energy production through engineering, scientific, and technological advances.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more