Skip to main content
padlock icon - secure page this page is secure

Sustainability Assessment of Protein-Soil Composite Materials for Limited Resource Environments

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

This article presents the sustainability assessment of a novel biocomposite material that is under investigation by NASA for use in construction in limited resource environments. The composite consists of soil particles solidified by a protein binding agent. Preliminary compressive strength data suggests the biocomposite could be used for numerous construction applications. To assess the biocomposite's potential for use in sustainable construction, a comparative process-based life cycle assessment between biocomposite and concrete pavers was performed to analyze the life cycle primary energy and IMPACT 2002+ points of both types of pavers. Results show that the concrete pavers outperform the biocomposite pavers in initial impact. However, biocomposite pavers can be more favorable when binder reclamation and reuse scenarios are taken into account at end-of-life. Based on these results, recommendations include switching to a mixture of lower grade proteins to reduce the biocomposite impact as well as further laboratory investigations into recycling scenarios.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: BIOCOMPOSITE; CONCRETE; PROTEIN; SUSTAINABILITY

Document Type: Research Article

Publication date: 01 August 2015

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more