Skip to main content
padlock icon - secure page this page is secure

Opinion: Can coalescent models explain deep divergences in the diatoms and argue for the acceptance of paraphyletic taxa at all taxonomic hierarchies?

Buy Article:

$39.00 + tax (Refund Policy)

Although ancestral polymorphisms and incomplete lineage sorting are commonly used at the population level, increasing reports of these models have been invoked and tested to explain deep radiations. Hypotheses are put forward for ancestral polymorphisms being the likely reason for paraphyletic taxa at the class level in the diatoms based on an ancient rapid radiation of the entire groups. Models for ancestral deep coalescence are invoked to explain paraphyly and molecular evolution at the class level in the diatoms. Other examples at more recent divergences are also documented. Discussion as to whether or not paraphyletic groups seen in the diatoms at all taxonomic levels should be recognized is provided. The continued use of the terms centric and pennate diatoms is substantiated with additional evidence produced to support their use in diatoms both as descriptive terms for both groups and as taxonomic groups for the latter because new morphological evidence from the auxospores justifies the formal classification of the basal and core araphids as new subclasses of pennate diatoms in the Class Bacillariophyceae. Keys for higher levels of the diatoms showing how the terms centrics and araphid diatoms can be defined are provided.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: February 1, 2016

More about this publication?
  • Nova Hedwigia is an international journal publishing original, peer-reviewed papers on current issues of taxonomy, morphology, ultrastructure and ecology of all groups of cryptogamic plants, including cyanophytes/cyanobacteria and fungi. The half-tone plates in Nova Hedwigia are known for their high quality, which makes them especially suitable for the reproduction of photomicrographs and scanning and transmission electron micrographs.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more