Skip to main content
padlock icon - secure page this page is secure

Thermal stratification, mixing, and heat budgets of Florida lakes

Buy Article:

Your trusted access to this article has expired.

$39.00 + tax (Refund Policy)

We measured temperature and oxygen profiles at approximately monthly intervals over a period of 15 months in four relatively deep (zmax = 17.5–24 m) Florida (USA) lakes. Johnson Pond and Lake Sheelar lie in north Florida. Lakes Tulane and Verona are in south-central Florida. All four lakes were strongly stratified thermally in summer and weakly stratified or isothermal during winter. Sheelar displayed winter isothermy at ∼17°C and Johnson Pond at ∼13°C. The southern lakes were isothermal at ∼19°C. Surface water temperatures exceeded 30°C in all lakes in summer. Annual heat budgets for each lake were calculated twice, using heat loss from summer to winter and heat gain from winter to summer in 2006 and 2007. Three lakes showed similar annual heat budgets despite differences in latitude and size: Sheelar (9069 and 9955 cal cm−2), Tulane (8459 and 9319 cal cm−2), and Verona (7948 and 8444 cal cm−2). Johnson Pond displayed lower values of 5105 and 6049 cal cm−2. Johnson Pond had lower isothermic winter temperatures. It also had smaller annual heat budgets because heat is not transferred effectively to great depth in the lake during the period when thermal stratification is established. This is a consequence of wind protection by surrounding vegetation, short fetch, and high amounts of dissolved and suspended material in the water. All four study basins have annual heat budgets that are low compared with temperate lakes of similar size and depth, but similar to values for many tropical basins. During winter circulation, oxygen penetrates to great depths in Lakes Sheelar, Tulane and Verona. The entire water column was oxygenated in Lake Sheelar during winter isothermy. Lakes Tulane and Verona, however, failed to oxygenate completely during winter mixing. Furthermore, oxygen was quickly depleted in deep waters of these relatively unproductive lakes after the onset of thermal stratification in spring. Johnson Pond was nearly completely deoxygenated during winter mixing. This was probably a consequence of dilution of oxygen in surface waters by deeper anoxic water and consumption of O2 by reduced ions that accumulate in the hypolimnion.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: May 1, 2009

More about this publication?
  • Fundamental and Applied Limnology is an international journal for freshwater research in the widest sense, including problems of marine biology and brackish water research. Papers dealing with ecological topics are especially welcome in association with experimental or physiological studies. All papers published in this journal are subject to peer review.

    Archiv für Hydrobiologie, now Fundamental and Applied Limnology has been published continuously since 1906.

    Volumes prior to vol. 168 were published under the previous title Archiv für Hydrobiologie.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more