Skip to main content
padlock icon - secure page this page is secure

Cation site occupancy of biogenic magnetite compared to polygenic ferrite spinels determined by X-ray magnetic circular dichroism

Buy Article:

Your trusted access to this article has expired.

$30.00 + tax (Refund Policy)

Ferrite spinels, especially magnetite (Fe3O4), can be formed either by geological, biological or chemical processes leading to chemically similar phases that show different physical characteristics. We compare, for the first time, magnetite produced by these three different methods using X-ray magnetic circular dichroism (XMCD), a synchrotron radiation based technique able to determine the site occupancy of Fe cations in the ferrite spinels. Extracellular nanoscale magnetite produced by different Fe(III)-reducing bacteria was shown to have different degrees of stoichiometry depending on the bacteria and the method of formation, but all were oxygen deficient due to formation under anoxic conditions. Intracellular nano-magnetite synthesized in the magnetosomes of magnetotactic bacteria was found to have a Fe cation site occupancy ratio most similar to stoichiometric magnetite, possibly due to the tight physiological controls exerted by the magnetosome membrane. Chemically-synthesised nano-magnetite and bulk magnetite produced as a result of geological processes were both found to be cation deficient with a composition between magnetite and maghemite (oxidised magnetite).
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: BIOGENIC MAGNETITE; BIOMINERALOGY; FE(III) REDUCTION; GEOBACTER; METAL REDUCTION; NANOPARTICLES; X-RAY MAGNETIC CIRCULAR DICHROISM; XMCD

Document Type: Research Article

Publication date: 01 October 2007

More about this publication?
  • The European Journal of Mineralogy publishes original papers, review articles and letters dealing with the mineralogical sciences s.l. These include primarily mineralogy, petrology, geochemistry, crystallography and ore deposits, as well as environmental, applied and technical mineralogy. Nevertheless, papers in any related field, including cultural heritage, will be considered.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more