Skip to main content

Models for Predicting Clearwood Mechanical Properties of Scots Pine

Notice

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

Wood mechanical properties, such as modulus of elasticity (MOE) and modulus of rupture (MOR), are important determinants of solid lumber performance and value. These properties vary systematically at different scales owing to multiple, potentially confounding, factors. Therefore, a statistical modeling approach may be an effective way to predict the impact of silvicultural practices on mechanical properties. The aim of this study was to develop models for predicting MOE and MOR in Scots pine (Pinus sylvestris L.), as functions of cambial age, height in the stem, wood density, and microfibril angle (MFA). Thirty-six trees were sampled from four mature Scots pine plantations in Scotland, UK. Longitudinal MOE and MOR were determined in static bending on 513 small (300 × 20 × 20 mm) defect-free samples. Nonlinear mixed-effects models based on an exponential function of cambial age were developed to predict the within-stem patterns of variation. The best model for MOR included cambial age, height in the stem, and sample density as explanatory variables, whereas the best MOE model also included a density/MFA term in the predictors. In growth simulations over a range of typical scenarios, the largest effect of silvicultural interventions was on the proportion of juvenile wood in the stem, but these had a negligible impact on mean tree MOE and MOR. The models will be incorporated into a growth, yield, and wood quality simulation system.

Keywords: Pinus sylvestris L; models; modulus of elasticity; modulus of rupture; nonlinear mixed-effects; simulation

Document Type: Research Article

Publication date: 30 August 2016

This article was made available online on 19 May 2016 as a Fast Track article with title: "Models for Predicting Clearwood Mechanical Properties of Scots Pine".

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content