Skip to main content
padlock icon - secure page this page is secure

An Alternative Classification Scheme for Uncertain Attribute Mapping

Buy Article:

$53.00 + tax (Refund Policy)

The reality of uncertain data cannot be ignored. Anytime that spatial data are used to assist planning, decision making, or policy generation, it is likely that error or uncertainty in the data will propagate through processing protocols and analytic techniques, potentially leading to biased or incorrect decision making. The ability to directly account for uncertainty in spatial analysis efforts is critically important. This article focuses on addressing data uncertainty in one of the most important and widely used exploratory spatial data analysis (ESDA) techniques—choropleth mapping—and proposes an alternative map classification method for uncertain spatial data. The classification approach maximizes within-class homogeneity under data uncertainty while explicitly integrating spatial characteristics to reduce visual map complexity and to facilitate pattern perception. The method is demonstrated by mapping the 2009 to 2013 American Community Survey estimates of median household income in Salt Lake County, Utah, at the census tract level.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: mapeo coroplético, clasificación, incertidumbre

Document Type: Research Article

Affiliations: 1: University of Utah, 2: Arizona State University,

Publication date: October 2, 2017

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more