Skip to main content
padlock icon - secure page this page is secure

An Experimental Deployment of a Portable Inflatable Habitat in Open Water to Augment Lengthy In-Water Decompression by Scientific Divers

Buy Article:

$21.73 + tax (Refund Policy)


Undersea living in the science community has effectively risen and fallen within the last half century. The paradigm of residing on the seafloor within a fixed, permanent structure, while body tissues are saturated with inert breathing gasses, provides for extended-duration excursions from such a structure, although limits geographical productivity to within reasonable proximity of the habitat structure itself. Saturation diving exploration with science motives provided an exciting opportunity during the 1960s and 1970s, with timing lending itself well to providing a sea-to-space analog for human residence in a remote and confined space, as the space race was underway. With limited saturation diving for science occurring presently, today’s marine science paradigm is trending toward advanced autonomous diving technologies and techniques, including mixed-gas use, rebreathers, and staged decompression. These emerging technologies afford an enhanced “commodity-style” approach to exploration, in which diving scientists can travel to any remote locale and spend longer durations underwater than they can with the previous and more common paradigm of lightweight, travel-friendly, conventional open-circuit scuba (using air as the breathing medium). Amiss in the new paradigm is the practical extension of depth. This is well within reach with the use of emerging technologies; however, end-users are often dissuaded from the incurrence of lengthy decompression (exposure to the marine environment during what is effectively an extended idle time) that is required when scientists return from relatively short working periods at extended depths. In an effort to address these issues, we describe here the development and experimental deployment of a new class of portable inflatable underwater habitats that provide for rapid deployments, free from surface support augmentation requirements typical of the existing alternatives for lengthy decompression dives. In the context of vastly expanding the commodity-style diving requirements of today’s marine scientist and engineers, particularly in terms of increased depth and duration, we also discuss the further research and development applications that these habitats make possible.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: decompression; mixed-gas; rebreather; scientific diving; underwater habitat

Document Type: Research Article

Publication date: November 1, 2013

More about this publication?
  • The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers on subjects of interest to the society: marine technology, ocean science, marine policy and education. The Journal is dedicated to publishing timely special issues on emerging ocean community concerns while also showcasing general interest and student-authored works.
  • Editorial Board
  • Submit a Paper
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more