Investigation of Underwater Acoustic Networking Enabling the Cooperative Operation of Multiple Heterogeneous Vehicles
Abstract
In this paper, we investigate the creation of an underwater acoustic network to support marine operations based on static and mobile nodes. Each underwater device combines communication, networking, and sensing capabilities and cooperates with the other devices in coordinated missions. The proposed system is built upon the SUNSET framework, providing acoustic communications and networking capabilities to autonomous underwater vehicles, autonomous surface vessels, and moored systems, using underwater acoustic modems. Specific solutions have been developed and tested to control the underwater nodes acoustically and to instruct the vehicles on keeping a given formation using acoustic links. One of the novelties of our approach has been the development and utilization of a realistic simulation infrastructure to provide a very accurate representation of all the dynamic systems involved in the network, modeling the vehicle dynamics, the acoustic channel, and the communication messages. This infrastructure has been extensively used to investigate and validate the proposed solutions under different environmental conditions before the actual deployment of devices. Several experiments were then conducted in the laboratory and in the field. The experimental results have confirmed the effectiveness of the proposed solutions and the reliability of the proposed simulation framework in estimating system performance.
In this paper, we investigate the creation of an underwater acoustic network to support marine operations based on static and mobile nodes. Each underwater device combines communication, networking, and sensing capabilities and cooperates with the other devices in coordinated missions. The proposed system is built upon the SUNSET framework, providing acoustic communications and networking capabilities to autonomous underwater vehicles, autonomous surface vessels, and moored systems, using underwater acoustic modems. Specific solutions have been developed and tested to control the underwater nodes acoustically and to instruct the vehicles on keeping a given formation using acoustic links. One of the novelties of our approach has been the development and utilization of a realistic simulation infrastructure to provide a very accurate representation of all the dynamic systems involved in the network, modeling the vehicle dynamics, the acoustic channel, and the communication messages. This infrastructure has been extensively used to investigate and validate the proposed solutions under different environmental conditions before the actual deployment of devices. Several experiments were then conducted in the laboratory and in the field. The experimental results have confirmed the effectiveness of the proposed solutions and the reliability of the proposed simulation framework in estimating system performance.
Keywords: SUNSET; Underwater acoustic networks; autonomous marine vehicles; distributed simulation framework; vehicle coordination
Document Type: Research Article
Publication date: March 1, 2013
- The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers on subjects of interest to the society: marine technology, ocean science, marine policy and education. The Journal is dedicated to publishing timely special issues on emerging ocean community concerns while also showcasing general interest and student-authored works.
- Submit a Paper
- Membership Information
- Information for Advertisers
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content