Skip to main content
padlock icon - secure page this page is secure

A comparison of error subspace Kalman filters

Buy Article:

$52.00 + tax (Refund Policy)


Three advanced filter algorithms based on the Kalman filter are reviewed and presented in a unified notation. They are the well-known ensemble Kalman filter (EnKF), the singular evolutive extended Kalman (SEEK) filter, and the less common singular evolutive interpolated Kalman (SEIK) filter. For comparison, the mathematical formulations of the filters are reviewed in relation to the extended Kalman filter as error subspace Kalman filters. The algorithms are presented in their original form and possible variations are discussed. A comparison of the algorithms shows their theoretical capabilities for efficient data assimilation with large-scale non-linear systems. In particular, problems of the analysis equations are apparent in the original EnKF algorithm due to the Monte Carlo sampling of ensembles. Theoretically, the SEIK filter appears to be a numerically very efficient algorithm with high potential for use with non-linear models. The superiority of the SEIK filter is demonstrated on the basis of identical twin experiments using a shallow-water model with non-linear evolution. Identical initial conditions for all three filters allow for a consistent comparison of the data assimilation results. These show how choices of particular state ensembles and assimilation schemes lead to significant variations of the filter performance. This is related to different qualities of the predicted error subspaces, as is demonstrated in an examination of the predicted state covariance matrices.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Alfred Wegener Institute for Polar and Marine Research, PO Box 12 0161, 27515 Bremerhaven, Germany

Publication date: October 1, 2005

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more