Skip to main content
padlock icon - secure page this page is secure

Numerical simulations of Rossby–Haurwitz waves

Buy Article:

$52.00 + tax (Refund Policy)

Simulations of Rossby–Haurwitz waves have been carried out using four different high‐resolution numerical shallow water models: a spectral model, two semi‐Langrangian models predicting wind components and potential vorticity respectively, and a finite‐volume model on a hexagonal–icosahedral grid. The simulations show that (i) unlike the nondivergent case, the shallow water Rossby–Haurwitz wave locally generates small‐scale features and so has a potential enstrophy cascade, and (ii) contrary to common belief, the zonal wavenumber 4 Rossby–Haurwitz wave is dynamically unstable and will eventually break down if initially perturbed. Implications of these results for the use of the Rossby–Haurwitz wave as a numerical model test case are discussed. The four models tested give very similar results, giving confidence in the accuracy and robustness of the results. The most noticeable difference between the models is that truncation errors in the hexagonal–icosahedral grid model excite the Rossby–Haurwitz wave instability, causing the wave to break down quickly, whereas for the other models in the configurations tested the instability is excited only by roundoff error at worst, and the Rossby–Haurwitz wave breaks down much more slowly or not at all.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Meteorology, University of Reading, PO Box 243, Earley Gate, Reading, RG6 6BB, UK; 2: Data Assimilation Office and Joint Center for Earth System Technology, NASA/Goddard Space Flight Center, Greenbelt, Maryland, USA

Publication date: March 1, 2000

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more