Skip to main content
padlock icon - secure page this page is secure

Melatonin suppresses proinflammatory mediators in lipopolysaccharide‐stimulated CRL1999 cells via targeting MAPK, NF‐κB, c/EBPβ, and p300 signaling

Buy Article:

$52.00 + tax (Refund Policy)

Abstract:  Melatonin is an indoleamine secreted by the pineal gland as well as a plant‐derived product that exerts potential anti‐inflammatory properties, but the mechanisms of action remain unclear. Here, we investigated the roles of melatonin in regulation of proinflammatory mediators and identified the underlying mechanisms in human vascular smooth muscle (VSM) cell line CRL1999 stimulated by lipopolysaccharide (LPS). We found that treatment with melatonin significantly inhibited the production and expression of TNF‐α and interleukin (IL)‐1β, cyclooxygenase‐2 (COX‐2), inducible nitric oxide synthase, prostaglandin E(2) (PGE2), and nitric oxide (NO) in a dose‐dependent manner. Moreover, we also found that the suppression of proinflammatory mediators by melatonin was mediated through inhibition of MAPK, NF‐κB, c/EBPβ, and p300 signaling in LPS‐stimulated CRL1999 cells. Treatment with melatonin markedly inhibited phosphorylation of ERK1/2, JNK, p38 MAPK, IκB‐α, and c/EBPβ, blocked binding of NF‐κB and c/EBPβ to promoters, and suppressed p300 histone acetyltransferase (HAT) activity and p300 HAT‐mediated NF‐κB acetylation. Transfection with an ERK‐, IκB‐, or c/EBPβ‐specific siRNA or pretreatment with an ERK‐, p38 MAPK‐, or p300‐selective inhibitor considerably abrogated the melatonin‐mediated inhibition of proinflammatory mediators. Conversely, exogenous overexpression of a constitutively active p300, but not its HAT mutant, effectively reversed the melatonin‐mediated inhibitions. Collectively, these results indicate that melatonin suppresses proinflammatory mediators by simultaneously targeting the multiple signaling such as ERK/p38 MAPK, c/EBPβ, NF‐κB, and p300, in LPS‐stimulated VSM cell line CRL1999, and suggest that melatonin is a potential candidate compound for the treatment of proinflammatory disorders.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China 2: Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China

Publication date: September 1, 2012

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more