Skip to main content
padlock icon - secure page this page is secure

Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines

Buy Article:

$52.00 + tax (Refund Policy)

Abstract: 

Kynuramines represent their own class of biogenic amines. They are formed either by decarboxylation of kynurenines or pyrrole ring cleavage of indoleamines. N2-formylated compounds formed in this last reaction can be deformylated either enzymatically by arylamine formamidases or hemoperoxidases, or photochemically. The earlier literature mainly focussed on cardiovascular effects of kynuramine, 5-hydroxykynuramine and their N1,N1-dimethylated analogs, including indirect effects via release of catecholamines or acetylcholine and interference with serotonin receptors. After the discovery of N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK) as major brain metabolites of melatonin, these compounds became of particular interest. They were shown to be produced enzymatically, pseudoenzymatically, by various free radical-mediated and via photochemical processes. In recent years, AFMK and AMK were shown to scavenge reactive oxygen and nitrogen species, thereby forming several newly discovered 3-indolinone, cinnolinone and quinazoline compounds, and to protect tissues from damage by reactive intermediates in various models. AMK is of special interest due to its properties as a potent cyclooxygenase inhibitor, NO scavenger forming a stable nitrosation product, inhibitor and/or downregulator of neuronal and inducible NO synthases, and a mitochondrial metabolism modulator. AMK easily interacts with aromates, forms adducts with tyrosyl and tryptophanyl residues, and may modify proteins.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: 5-hydroxykynuramine; AFMK; AMK; inflammation; mitochondria; pyrrole ring cleavage; reactive nitrogen species; reactive oxygen species

Document Type: Review Article

Affiliations: 1: Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany 2: Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA

Publication date: September 1, 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more