Skip to main content
padlock icon - secure page this page is secure

Pim-1 induced polyploidy but did not affect megakaryocytic differentiation of K562 cells and CD34+ cells from cord blood

Buy Article:

$52.00 + tax (Refund Policy)

Abstract

In a previous study, we determined the gene expression profile of both megakaryocytic and non-megakaryocytic lineage cells via serial analysis of gene expression and microarray methods, and demonstrated that Pim-1 was expressed more abundantly in megakaryocytic lineage cells. In this study, we knocked down Pim-1 in K562 cells, as well as in CD34+ cells from cord blood, via RNA interference, in order to analyze the effects of Pim-1 expression on the megakaryocytic differentiation of these cells. We then additionally overexpressed the Pim-1 genes in K562 cells, and conducted a comparison of these effects with those of RNAi cells on the course of megakaryocytic differentiation. The results of this study revealed that Pim-1 knockdown exerted no effects on commitment or differentiation toward megakaryocytic lineage, as evidenced by the detected CD41+ or CD61+ cells, or on the number of megakaryocytic colony forming units. However, Pim-1 knockdown was found to elicit a reduction in CD41+ cells with >4n DNA content, and a concomitant increase in the fraction of cells achieving a ploidy of >4n in the Pim-1 overexpressing population of K562 cells. Collectively, the findings of these studies indicate that the expression of Pim-1 expression is both necessary and sufficient for polyploidization, but is not critical to cytoplasmic differentiation on megakaryopoiesis.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: CD34+ cells; K562 cells; Pim-1; megakaryopoiesis

Document Type: Research Article

Affiliations: 1: Department of Microbiology, Gachun Medical School, Inchon 2: Microbiology 3: Pediatrics 4: Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul, Korea

Publication date: February 1, 2007

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more