Skip to main content
padlock icon - secure page this page is secure

Darwin's finches: a model of landscape effects on metacommunity dynamics in the Galápagos Archipelago

Buy Article:

$52.00 + tax (Refund Policy)

Darwin's finches represent a dynamic radiation of birds within the Galápagos Archipelago. Unlike classic island radiations dominated by island endemics and intuitive ‘conveyer belt’ colonization with little subsequent dispersal, species of Darwin's finches have populations distributed across many islands and each island contains complex metacommunities of closely related birds. Understanding the role of metacommunity and structured population dynamics in speciation within this heterogeneous island system would provide insights into the roles of fragmentation and dispersal in evolution. In this study, a large multi‐species dataset and a comparative ground finch dataset (two co‐distributed lineages) were used to show how landscape features influence patterns of gene flow across the archipelago. Factors expected to regulate migration including distance and movement from large, central islands to small, peripheral islands were rejected in the multi‐species dataset. Instead, the harsh northeast islands contributed individuals to the larger central islands. Successful immigration relies on three factors: arriving, surviving and reproducing, thus the dispersal towards the central islands may be either be due to more migrants orienting towards these land masses due to their large size and high elevation, or may reflect a higher likelihood of survival and successful reproduction due to the larger diversity of habitats and more environmentally stable ecosystems that these islands possess. Further, the overall directionality of migration was south‐southwest against the dominant winds and currents. In comparing dispersal between the common cactus finch and medium ground finch, both species had similar migration rates but the cactus finch had approximately half the numbers of migrants due to lower effective populations sizes. Significant population structure in the cactus finch indicates potential for further speciation, while the medium ground finch maintains cohesive gene flow across islands. These patterns shed light on the macroevolutionary patterns that drive diversification and speciation within a radiation of highly‐volant taxa.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Geospiza; dispersal; metacommunity; migrate-n

Document Type: Research Article

Publication date: October 1, 2019

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more