Skip to main content
padlock icon - secure page this page is secure

sars: an R package for fitting, evaluating and comparing species–area relationship models

Buy Article:

$52.00 + tax (Refund Policy)

The species–area relationship (SAR) constitutes one of the most general ecological patterns globally. A number of different SAR models have been proposed. Recent work has shown that no single model universally provides the best fit to empirical SAR datasets: multiple models may be of practical and theoretical interest. However, there are no software packages available that a) allow users to fit the full range of published SAR models, or b) provide functions to undertake a range of additional SAR‐related analyses. To address these needs, we have developed the R package ‘sars’ that provides a wide variety of SAR‐related functionality. The package provides functions to: a) fit 20 SAR models using non‐linear and linear regression, b) calculate multi‐model averaged curves using various information criteria, and c) generate confidence intervals using bootstrapping. Plotting functions allow users to depict and scrutinize the fits of individual models and multi‐model averaged curves. The package also provides additional SAR functionality, including functions to fit, plot and evaluate the random placement model using a species–sites abundance matrix, and to fit the general dynamic model of oceanic island biogeography. The ‘sars’ R package will aid future SAR research by providing a comprehensive set of simple to use tools that enable in‐depth exploration of SARs and SAR‐related patterns. The package has been designed to allow other researchers to add new functions and models in the future and thus the package represents a resource for future SAR work that can be built on and expanded by workers in the field.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: diversity–area relationship; island biogeography; species–area relationship

Document Type: Research Article

Publication date: August 1, 2019

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more