Skip to main content
padlock icon - secure page this page is secure

The interplay between facilitation and habitat type drives spatial vegetation patterns in global drylands

Buy Article:

$52.00 + tax (Refund Policy)

The spatial configuration of vascular vegetation has been linked to variations in land degradation and ecosystem functioning in drylands. However, most studies on spatial patterns conducted to date have focused on a single or a few study sites within a particular region, specific vegetation types, or in landscapes characterized by a certain type of spatial patterns. Therefore, little is known on the general typology and distribution of plant spatial patterns in drylands worldwide, and on the relative importance of biotic and abiotic factors as predictors of their variations across geographical regions and habitat types. We analyzed 115 dryland plant communities from all continents except Antarctica to: 1) investigate the general typology of spatial patterns, and 2) assess the relative importance of biotic (plant cover, frequency of facilitation, soil amelioration, height of the dominant species) and abiotic (aridity, rainfall seasonality and sand content) factors as predictors of spatial patterns (median patch size, shape of patch‐size distribution and regularity) across contrasting habitat types (shrublands and grasslands). Precipitation during the warmest period and sand content were particularly strong predictors of plant spatial patterns in grasslands and shrublands, respectively. Facilitation associated with power‐law like and irregular spatial patterns in both shrublands and grasslands, although it was mediated by different mechanisms (respectively soil ammelioration and percentage of facilitated species). The importance of biotic attributes as predictors of the shape of patch‐size distributions declined with aridity in both habitats, leading to the emergence of more regular patterns under the most arid conditions. Our results expand our knowledge about patch formation in drylands and the habitat‐dependency of their drivers. They also highlight different ways in which facilitation affects ecosystem structure through the formation of plant spatial patterns.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: aridity; patch-size distributions; regular spatial patterns

Document Type: Research Article

Publication date: April 1, 2019

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more