Skip to main content
padlock icon - secure page this page is secure

Alternative stable equilibria and critical thresholds created by fire regimes and plant responses in a fire‐prone community

Buy Article:

$52.00 + tax (Refund Policy)

Wildfire is a dominant disturbance in many ecosystems, and fire frequency and intensity are being altered as climates change. Through effects on mortality and regeneration, fire affects plant community composition, species richness, and carbon cycling. In some regions, changes to fire regimes could result in critical, non‐reversible transitions from forest to non‐forested states. For example, the Klamath ecoregion (northwest United States) supports extensive conifer forests that are initially replaced by hardwood chaparral following high‐severity fire, but eventually return to conifer forest during the fire‐free periods. Climate change alters both the fire regime and post‐fire recovery dynamics, potentially causing shrubland to persist as a stable (i.e. self‐renewing) vegetation stage, rather than an ephemeral stage. Here, we present a theoretical investigation of how changes in plant traits and fire regimes can alter the stability of communities in forest‐shrub systems such as the Klamath. Our model captures the key characteristics of the system, including life‐stage‐specific responses to disturbance and asymmetrical competitive interactions. We assess vegetation stability via invasion analysis, and conclude that portions of the landscape that are currently forested also can be stable as shrubland. We identify parameter thresholds where community equilibria change from stable to unstable, and show how these thresholds may shift in response to changes in life‐history or environmental parameters. For instance, conifer maturation rates are expected to decrease as aridity increases under climate change, and our model shows that this reduction decreases the fire frequencies at which forests become unstable. Increases in fire activity sufficient to destabilize forest communities are likely to occur in more arid future climates. If widespread, this would result in reduced carbon stocks and a positive feedback to climate change. Changes in stability may be altered by management practices.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: alternative stable equilibria; disturbance theory; theoretical modeling

Document Type: Research Article

Publication date: January 1, 2019

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more