Skip to main content
padlock icon - secure page this page is secure

Trait syndromes among North American trees are evolutionarily conserved and show adaptive value over broad geographic scales

Buy Article:

$52.00 + tax (Refund Policy)

Adaptive syndromes and their evolutionary constraints represent a powerful construct for understanding plant distributions. However, it is unclear how the species requirements to face multiple stressors promotes syndrome formation and to which abiotic stressors these syndromes show adaptive value over broad geographic scales. We combined local occurrence data from the U.S. Forest Inventory and Analysis (FIA) of 219 angiosperm and 85 gymnosperm species living across the conterminous US with phylogenies and trait data to identify tree syndromes, their evolutionary conservatism, and their adaptive value over broad scales. Factor analyses and evolutionary model selection revealed that trees possess functional trait syndromes that are strongly conserved. Major syndromes at the species level differed between angiosperms and gymnosperms. While the two main syndromes in angiosperms were related to cold and drought‐waterlogging tolerance, in gymnosperms a trade‐off between shade and drought tolerance was the main syndrome followed by a growth‐fire resistance syndrome. Additional RLQ and fourth‐corner approaches revealed that trait syndromes at the community level were broadly similar to those observed at the species level for angiosperms, although this was less clear for gymnosperms. This suggests that syndrome evolution has played an important role on angiosperm distributions, whereas additional ecological factors explain gymnosperm distributions. Importantly, syndromes show adaptive value, as they were geographically associated with several environmental variables showing structure from continental to local scales, being temperature the main abiotic stressor. Our results indicate that across the conterminous US tree species possess clear syndromes that are subjected to strong evolutionary constraints driving tree species and forest community distribution.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: March 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more