Skip to main content
padlock icon - secure page this page is secure

A comparison of network and clustering methods to detect biogeographical regions

Buy Article:

$52.00 + tax (Refund Policy)

Bioregions are an important concept in biogeography, and are key to our understanding of biodiversity patterns across the world. The use of networks in biogeography to produce bioregions is a relatively novel approach that has been proposed to improve upon current methods. However, it remains unclear if they may be used in place of current methods and/or offer additional biogeographic insights. We compared two network methods to detect bioregions (modularity and map equation) with the conventional distance‐based clustering method. We also explored the relationship between network and biodiversity metrics. For the analysis we used two datasets of iconic Australian plant groups at a continental scale, Acacia and eucalypts, as example groups. The modularity method detected fewer large bioregions produced the most succinct bioregionalisation for both plant groups corresponding to Australian biomes, while map equation detected many small bioregions including interzones at a natural scale of one. The clustering method was less sensitive than network methods in detecting bioregions. The network metric called participation coefficient from both network partition methods identified interzones or transition zones between bioregions. Furthermore, another network metric (betweenness) was highly correlated to richness and endemism. We conclude that the application of networks to biogeography offers a number of advantages and provides novel insights. More specifically, our study showed that these network partition methods were more efficient than the clustering method for bioregionalisation of continental‐scale data in: 1) the identification of bioregions and 2) the quantification of biogeographic transition zones using the participation coefficient metric. The use of network methods and especially the participation coefficient metric adds to bioregionalisation by identifying transition zones which could be useful for conservation purposes and identifying biodiversity hotspots.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more