Skip to main content
padlock icon - secure page this page is secure

Synchronicity in elevation range shifts among small mammals and vegetation over the last century is stronger for omnivores

Buy Article:

$52.00 + tax (Refund Policy)

In mountain ecosystems, species can be said to respond synchronously to environmental change when the elevation ranges of vegetation types and their associated vertebrates expand or contract in the same direction. Conversely, the response is asynchronous when the elevation ranges of vegetation types and associated vertebrates change in different directions. The capacity of vertebrate species to respond synchronously with change in the elevation ranges of the vegetation that comprises their habitat is likely a function of their ecological traits. Here we combine measures of elevation range shifts in 23 vertebrate species with those of their associated vegetation types across 80 yr, on a large elevation transect in California's Sierra Nevada mountains that encompasses Yosemite National Park. Half the species’ shifts were synchronous with vegetation shifts, ΒΌ of the species were asynchronous, and the others showed no relationship. Most species that responded synchronously to changes in vegetation elevation ranges expanded their elevation range, and are inhabitants of low and intermediate elevations. In contrast, those species whose range shifts were asynchronous to associated vegetation shifts inhabit high elevations. These species experienced contraction in elevation range even while their associated vegetation types expanded. However, these species were responding synchronously to a subset of their associated vegetation types. Considering trait‐based predictors, omnivores were more synchronous than herbivores. Our results on synchronous and asynchronous elevation shifts with vegetation may permit more accurate modeling of future ranges for vertebrates in California's Sierra Nevada. The approach also offers a new method for use in assessment of vertebrate vulnerability in other mountain regions, and can be an important component of assessing their vulnerability to climate change.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: June 1, 2015

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more