Skip to main content
padlock icon - secure page this page is secure

Use of simulated data from a process-based habitat model to evaluate methods for predicting species occurrence

Buy Article:

$52.00 + tax (Refund Policy)

Much research has centered on determining which habitat model best predicts species occurrence. However, previous work typically used data sets that are inherently biased for evaluation. The use of simulated data provides a way of testing model performance using un-biased data where the true relationships between species occurrence and population processes are predefined using sound ecological theory. We used a process-based habitat model to generate simulated occurrence data to evaluate presence–absence and presence–only methods: generalized linear and generalized additive models (GLM, GAM), maximum entropy model (Maxent), and discrete choice models (DCM). This is the first study to use a DCM for predicting species distributions. We varied the effect that habitat quality had on fecundity and reported the model responses to these changes. When the effect of habitat quality on fecundity was weak, model performance was no better than random for all methods, however, performance increased as the habitat/fecundity relationship became stronger. For each level of habitat quality effect, there was little variation in performance between the presence–absence and presence–only methods. The use of a process-based habitat model to generate occurrence data for evaluating model performance has a distinct advantage over other testing methods, because no errors are made during sampling and the true ecological relationships between population process and species occurrence are known. This leads to un-biased results and increased confidence in assessing model performance and making management recommendations.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: September 1, 2010

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more