Skip to main content
padlock icon - secure page this page is secure

Assessing ecosystem threats from global and regional change: hierarchical modeling of risk to sagebrush ecosystems from climate change, land use and invasive species in Nevada, USA

Buy Article:

$52.00 + tax (Refund Policy)

Global change poses significant challenges for ecosystem conservation. At regional scales, climate change may lead to extensive shifts in species distributions and widespread extirpations or extinctions. At landscape scales, land use and invasive species disrupt ecosystem function and reduce species richness. However, a lack of spatially explicit models of risk to ecosystems makes it difficult for science to inform conservation planning and land management. Here, I model risk to sagebrush (Artemisia spp.) ecosystems in the state of Nevada, USA from climate change, land use/land cover change, and species invasion. Risk from climate change is based on an ensemble of 10 atmosphere-ocean general circulation model (AOGCM) projections applied to two bioclimatic envelope models (Mahalanobis distance and Maxent). Risk from land use is based on the distribution of roads, agriculture, and powerlines, and on the spatial relationships between land use and probability of cheatgrass Bromus tectorum invasion in Nevada. Risk from land cover change is based on probability and extent of pinyon-juniper (Pinus monophylla; Juniperus spp.) woodland expansion. Climate change is most likely to negatively impact sagebrush ecosystems at the edges of its current range, particularly in southern Nevada, southern Utah, and eastern Washington. Risk from land use and woodland expansion is pervasive throughout Nevada, while cheatgrass invasion is most problematic in the northern part of the state. Cumulatively, these changes pose major challenges for conservation of sagebrush and sagebrush obligate species. This type of comprehensive assessment of ecosystem risk provides managers with spatially explicit tools important for conservation planning.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: February 1, 2010

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more