Skip to main content
padlock icon - secure page this page is secure

Detecting spatial hot spots in landscape ecology

Buy Article:

$52.00 + tax (Refund Policy)

Hot spots are typically locations of abundant phenomena. In ecology, hot spots are often detected with a spatially global threshold, where a value for a given observation is compared with all values in a data set. When spatial relationships are important, spatially local definitions – those that compare the value for a given observation with locations in the vicinity, or the neighbourhood of the observation – provide a more explicit consideration of space. Here we outline spatial methods for hot spot detection: kernel estimation and local measures of spatial autocorrelation. To demonstrate these approaches, hot spots are detected in landscape level data on the magnitude of mountain pine beetle infestations. Using kernel estimators, we explore how selection of the neighbourhood size () and hot spot threshold impact hot spot detection. We found that as  increases, hot spots are larger and fewer; as the hot spot threshold increases, hot spots become larger and more plentiful and hot spots will reflect coarser scale spatial processes. The impact of spatial neighbourhood definitions on the delineation of hot spots identified with local measures of spatial autocorrelation was also investigated. In general, the larger the spatial neighbourhood used for analysis, the larger the area, or greater the number of areas, identified as hot spots.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: October 1, 2008

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more