Skip to main content
padlock icon - secure page this page is secure

Contrasting spatial and temporal global change impacts on butterfly species richness during the 20th century

Buy Article:

$52.00 + tax (Refund Policy)

Regional patterns of species richness are often explained by models using temperature or measures habitat suitability. Generally, species richness is positively associated with temperature, and negatively associated with habitat degradation. While these models have been well tested across spatial scales, they have rarely been tested on a temporal scale – in part due to the difficulty in ascertaining accurate historical data at an appropriate resolution. In this study, we compared the results of temporal and spatial models, each incorporating two predictors of species richness: temperature, and human population density (as a surrogate of human-related habitat impacts). We found that the change in species richness from the early to late part of the 20th century was positively correlated with temperature change, and negatively correlated with human population density change. When we compared these results to two spatial models using contemporary and historic data, the spatial effects of temperature on butterfly richness were similar to its temporal effects, while the effect of human population density through time is the opposite of its spatial effect. More generally, the assumption that spatial patterns are equivalent to temporal ones when applying macroecological data to global change is clearly unreliable.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: December 1, 2006

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more