Skip to main content
padlock icon - secure page this page is secure

Stream meanders increase insectivorous bird abundance in riparian deciduous forests

Buy Article:

$52.00 + tax (Refund Policy)

Adult aquatic insects emerging from streams are a fundamental resource sustaining riparian bird communities in broad-leaved deciduous forests. We investigated how stream geomorphology affects the aquatic insect flux and insectivorous bird abundance in 26 riparian-forest plots during spring season in northern Japan. Lateral dispersal of emergent aquatic insects into the riparian forest exponentially decreased with distance from the stream. Similar to aquatic insect distribution, flycatchers and gleaners concentrated their foraging attacks around the stream channel, preying intensively upon emergent aquatic insects. In contrast, bark probers consumed fewer emergent aquatic insects. The abundance of flycatchers and gleaners was closely related to stream geomorphology, whereas that of bark probers was associated with snag density in the study plots. A path analysis showed that the study plots with longer stream channels had greater aquatic insect abundance. This can be interpreted as a consequence of the increased amount of both stream edge and stream surface, where emergent aquatic insects readily penetrate. The increased flux of aquatic insects by stream meanders elevated gleaner abundance in the study plots. In addition, their abundance was directly affected by stream length per se. On the other hand, flycatcher abundance was only directly affected by stream length. Flycatchers, which mainly consumed emergent aquatic insects in the air, may have increased in response to the increase in suitable foraging sites (i.e., open spaces adjacent to perches) accompanying longer stream channels. Although the causal links affecting bird abundance differed among guilds, meandering streams apparently support abundant insectivorous birds in riparian forests. Therefore, to conserve riparian bird communities, it will be necessary to maintain the functions of stream geomorphology that affect the magnitude of energy transfer across the forest-stream interface.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: June 1, 2003

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more