Skip to main content
padlock icon - secure page this page is secure

Validation of MCADD newborn screening

Buy Article:

$59.00 + tax (Refund Policy)

Maier EM, Pongratz J, Muntau AC, Liebl B, Nennstiel-Ratzel U, Busch U, Fingerhut R, Olgemöller B, Roscher AA, Röschinger W. Validation of MCADD newborn screening

Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) represents a potentially fatal fatty acid -oxidation disorder. Newborn screening (NBS) by tandem mass spectrometry (MS/MS) has been implemented worldwide, but is associated with unresolved questions regarding population heterogeneity, burden on healthy carriers, cut-off policies, false-positive and negative rates. In a retrospective case-control study, 333 NBS samples showing borderline acylcarnitine patterns but not reaching recall criteria were genotyped for the two most common mutations (c.985A>G/c.199C>T) and compared with genotypes and acylcarnitines of 333 controls, 68 false-positives, and 34 patients. c.985A>G was more frequently identified in the study group and false-positives compared to controls (1:4.3/1:2.3 vs. 1:42), whereas c.199C>T was found more frequently only within the false-positives (1:23). Biochemical criteria were devised to differentiate homozygous (c.985A>G), compound heterozygous (c.985A>G/c.199C>T), and heterozygous individuals. Four false-negatives were identified because our initial algorithm required an elevation of octanoylcarnitine (C8) and three secondary markers in the initial and follow-up sample. The new approach allowed a reduction of false-positives (by defining high cut-offs: 1.4 mol/l for C8; 7 for C8/C12) and false-negatives (by sequencing the ACADM gene of few suspicious samples). Our validation strategy is able to differentiate healthy carriers from patients doubling the positive predictive value (42→88%) and to target NBS to MCADD-subsets with potentially higher risk of adverse outcome. It remains controversial, if NBS programs should aim at identifying all subsets of all diseases included. Because the natural course of milder variants cannot be assessed by observational studies, our strategy could serve as a general model for evaluation of MS/MS-based NBS.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: acylcarnitine patterns; carrier detection; genotyping; medium–chain acyl–CoA dehydrogenase deficiency; mild biochemical phenotypes; newborn screening; population heterogeneity

Document Type: Research Article

Affiliations: 1: Research Center, Department of Biochemical Genetics and Molecular Biology, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany 2: Public Health Newborn Screening Center of the State of Bavaria, Oberschleißheim, Germany 3: Laboratory Becker, Olgemöller & Colleagues, Munich, Germany

Publication date: August 1, 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more