Skip to main content
padlock icon - secure page this page is secure

Modelling dynamic hysteresis loops in steel sheets

Buy Article:

$41.82 + tax (Refund Policy)

Purpose ‐ The aim of the paper is to present a simple approach to modelling minor hysteresis loops in grain-oriented steel sheets under quasi-static and dynamic conditions. The hysteresis phenomenon is described with a recently developed hybrid model, which combines ideas inherent in the product Preisach model and the Jiles-Atherton description. The dynamic effects due to eddy currents are taken into account in the description using a lagged response with respect to the input. Design/methodology/approach ‐ It is assumed that some model parameters might be dependent on the level of relative magnetization within the material. Their dependencies could be given as power laws. The values of scaling coefficients in power laws are determined. Findings ‐ A satisfactory agreement of experimental and modelled quasi-static and dynamic hysteresis loops is obtained. Research limitations/implications ‐ The present study provides a starting point for further verification of the approach for other classes of soft magnetic materials, which could be described with the developed model. At present, the approach to model minor loops by the update of model parameters is verified for the B-sine excitation case. Practical implications ‐ The "branch-and-bound" optimization algorithm is a useful tool for recovery of the values of both model parameters and scaling coefficients as well. Originality/value ‐ The recently developed hybrid description of hysteresis phenomenon can be successfully extended to take into account symmetric minor loops. The developed approach could be a framework to develop a comprehensive description of magnetization phenomena in the future.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Electromagnetism; Modelling; Steel

Document Type: Research Article

Publication date: May 8, 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more