Skip to main content
padlock icon - secure page this page is secure

A low power miniaturized monitoring system of six human physiological parameters based on wearable body sensor network

Buy Article:

$38.68 + tax (Refund Policy)

Purpose

– The purpose of this paper is to design a low-power human physiological parameters monitoring system which can monitor six vital parameters simultaneously based on wearable body sensor network.

Design/methodology/approach

– This paper presents a low-power multiple physiological parameters monitoring system (MPMS) which comprises four subsystems. These are: electrocardiogram (ECG)/respiration (RESP) parameters monitoring subsystem with embedded algorithms; blood oxygen (SpO2)/pulse rate (PR)/body temperature (BT)/blood pressure (BP) parameters monitoring subsystem with embedded algorithms; main control subsystem which is in charge of system-level power management, communication and interaction design; and upper computer software subsystem which manipulates system function and analyzes data.

Findings

– Results have successfully demonstrated monitoring human ECG, RESP, PR, SpO2, BP and BT simultaneously using the MPMS device. In addition, the power reduction technique developed in this work at the physical/hardware level is effective. Reliability of algorithms developed for monitoring these parameters is assessed by Fluke Prosim8 Vital Signs Simulators (produced by Fluke Corp. USA).

Practical implications

– The MPMS device provides long-term health monitoring without interference from normal personal activities, which potentially allows applications in real-time daily healthcare monitoring, chronic diseases monitoring, elderly monitoring, human emotions recognization and so on.

Originality/value

– First, a power reduction technique at the physical/hardware level is designed to realize low power consumption. Second, the proposed MPMS device enables simultaneously monitoring six key parameters. Third, unlike most monitoring systems in bulk size, the proposed system is much smaller (118 × 58 × 18.5 mm3, 140 g total weight). In addition, a comfortable smart shirt is fabricated to accommodate the portable device, offering reliable measurements.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Body sensor network; Healthcare monitoring; Low power; Smart shirt; Wearable

Document Type: Research Article

Publication date: March 16, 2015

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more