Skip to main content
padlock icon - secure page this page is secure

A new asymmetrical mass distribution method on the analysis of universal "force-sensing" model for 3-DOF translational parallel manipulator

Buy Article:

$40.95 + tax (Refund Policy)

Purpose ‐ The characteristic of static is quite important especially for the manipulator with force feedback. This paper aims to improve the traditional static model by considering the limitations such as lacking of versatility and ignoring gravity of links. For this purpose, a new asymmetric mass distribution method on the analysis of universal "force-sensing" model has been put forward to overcome the limitations. Design/methodology/approach ‐ Through the forces and torques analysis of every link and the moving platform, the static model of 3-RUU manipulator is acquired. Then, based on the physical meaning analysis of every part in the static model of 3-RUU manipulator, a new asymmetric mass distribution method on the analysis of universal "force-sensing" model can be obtained. Findings ‐ The correctness of the static model of 3-RUU manipulator is verified by simulation results based on Pro/Engineer software and Adams software. Furthermore, experiment results based on a manipulator similar to the Omega.3 manipulator indicate that the universal "force-sensing" model can be applicable to the above manipulator. Originality/value ‐ A new asymmetric mass distribution method on the analysis of universal static mathematical model has been put forward. Based on physical meaning of the above method, the "force-sensing" model can be established quickly and it owns versatility, which can be applicable to the 3-RUU manipulator, the Omega.3 parallel manipulator and other similar manipulators with force feedback. In addition, it can improve the accuracy of the "force-sensing" model to a great extent.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Asymmetric mass distribution method; Force-sensing; Parallel manipulator; Universal model

Document Type: Research Article

Publication date: January 14, 2014

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more